3.529 \(\int \frac{\sec ^2(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=179 \[ \frac{(5 A+19 B-75 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{(A-B+9 C) \tan (c+d x)}{4 a^2 d \sqrt{a \sec (c+d x)+a}}-\frac{(A-B+C) \tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac{(3 A+5 B-13 C) \tan (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

((5*A + 19*B - 75*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d)
 - ((A - B + C)*Sec[c + d*x]^2*Tan[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) - ((3*A + 5*B - 13*C)*Tan[c + d*
x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2)) + ((A - B + 9*C)*Tan[c + d*x])/(4*a^2*d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.49072, antiderivative size = 179, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 43, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.116, Rules used = {4084, 4008, 4001, 3795, 203} \[ \frac{(5 A+19 B-75 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{(A-B+9 C) \tan (c+d x)}{4 a^2 d \sqrt{a \sec (c+d x)+a}}-\frac{(A-B+C) \tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac{(3 A+5 B-13 C) \tan (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((5*A + 19*B - 75*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d)
 - ((A - B + C)*Sec[c + d*x]^2*Tan[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) - ((3*A + 5*B - 13*C)*Tan[c + d*
x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2)) + ((A - B + 9*C)*Tan[c + d*x])/(4*a^2*d*Sqrt[a + a*Sec[c + d*x]])

Rule 4084

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[((a*A - b*B + a*C)*Cot[e + f*x]*(a + b*Cs
c[e + f*x])^m*(d*Csc[e + f*x])^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m +
1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m - n)
))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4008

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(b^2*(2*
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4001

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*B*m + A*b*(m + 1))/(b*(
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B,
0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx &=-\frac{(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{\int \frac{\sec ^2(c+d x) \left (2 a (A+B-C)+\frac{1}{2} a (A-B+9 C) \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac{(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{(3 A+5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac{\int \frac{\sec (c+d x) \left (-\frac{3}{4} a^2 (3 A+5 B-13 C)-a^2 (A-B+9 C) \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{8 a^4}\\ &=-\frac{(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{(3 A+5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{(A-B+9 C) \tan (c+d x)}{4 a^2 d \sqrt{a+a \sec (c+d x)}}+\frac{(5 A+19 B-75 C) \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac{(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{(3 A+5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{(A-B+9 C) \tan (c+d x)}{4 a^2 d \sqrt{a+a \sec (c+d x)}}-\frac{(5 A+19 B-75 C) \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=\frac{(5 A+19 B-75 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{(3 A+5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{(A-B+9 C) \tan (c+d x)}{4 a^2 d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 25.0304, size = 7172, normalized size = 40.07 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B]  time = 0.319, size = 870, normalized size = 4.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x)

[Out]

-1/32/d/a^3*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(-5*A*cos(d*x+c)^2*sin(d*x+c)*ln(-(-(-2*cos(
d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-19*B*co
s(d*x+c)^2*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(
d*x+c)/(cos(d*x+c)+1))^(1/2)+75*C*cos(d*x+c)^2*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c
)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-10*A*cos(d*x+c)*sin(d*x+c)*ln(-(-(-2*cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-38*B*cos(d*
x+c)*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)
/(cos(d*x+c)+1))^(1/2)+150*C*cos(d*x+c)*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d
*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+2*A*cos(d*x+c)^3-5*A*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c
)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-18*B*cos(d*x+
c)^3-19*B*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(
d*x+c)+1))^(1/2)*sin(d*x+c)+98*C*cos(d*x+c)^3+75*C*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d
*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+8*A*cos(d*x+c)^2-8*B*cos(d*x+c)^2+72*C*co
s(d*x+c)^2-10*A*cos(d*x+c)+26*B*cos(d*x+c)-106*C*cos(d*x+c)-64*C)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 0.626159, size = 1365, normalized size = 7.63 \begin{align*} \left [\frac{\sqrt{2}{\left ({\left (5 \, A + 19 \, B - 75 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (5 \, A + 19 \, B - 75 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (5 \, A + 19 \, B - 75 \, C\right )} \cos \left (d x + c\right ) + 5 \, A + 19 \, B - 75 \, C\right )} \sqrt{-a} \log \left (-\frac{2 \, \sqrt{2} \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \,{\left ({\left (A - 9 \, B + 49 \, C\right )} \cos \left (d x + c\right )^{2} +{\left (5 \, A - 13 \, B + 85 \, C\right )} \cos \left (d x + c\right ) + 32 \, C\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{64 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac{\sqrt{2}{\left ({\left (5 \, A + 19 \, B - 75 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (5 \, A + 19 \, B - 75 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (5 \, A + 19 \, B - 75 \, C\right )} \cos \left (d x + c\right ) + 5 \, A + 19 \, B - 75 \, C\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) - 2 \,{\left ({\left (A - 9 \, B + 49 \, C\right )} \cos \left (d x + c\right )^{2} +{\left (5 \, A - 13 \, B + 85 \, C\right )} \cos \left (d x + c\right ) + 32 \, C\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{32 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/64*(sqrt(2)*((5*A + 19*B - 75*C)*cos(d*x + c)^3 + 3*(5*A + 19*B - 75*C)*cos(d*x + c)^2 + 3*(5*A + 19*B - 75
*C)*cos(d*x + c) + 5*A + 19*B - 75*C)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)
)*cos(d*x + c)*sin(d*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x + c) + a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)
) + 4*((A - 9*B + 49*C)*cos(d*x + c)^2 + (5*A - 13*B + 85*C)*cos(d*x + c) + 32*C)*sqrt((a*cos(d*x + c) + a)/co
s(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/3
2*(sqrt(2)*((5*A + 19*B - 75*C)*cos(d*x + c)^3 + 3*(5*A + 19*B - 75*C)*cos(d*x + c)^2 + 3*(5*A + 19*B - 75*C)*
cos(d*x + c) + 5*A + 19*B - 75*C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/
(sqrt(a)*sin(d*x + c))) - 2*((A - 9*B + 49*C)*cos(d*x + c)^2 + (5*A - 13*B + 85*C)*cos(d*x + c) + 32*C)*sqrt((
a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d
*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \sec{\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)**2/(a*(sec(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________

Giac [B]  time = 9.76439, size = 487, normalized size = 2.72 \begin{align*} \frac{\frac{{\left ({\left (\frac{2 \,{\left (\sqrt{2} A a^{6} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right ) - \sqrt{2} B a^{6} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right ) + \sqrt{2} C a^{6} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}{a^{8}} + \frac{\sqrt{2} A a^{6} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right ) - 9 \, \sqrt{2} B a^{6} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right ) + 17 \, \sqrt{2} C a^{6} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}{a^{8}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - \frac{3 \, \sqrt{2} A a^{6} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right ) - 11 \, \sqrt{2} B a^{6} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right ) + 83 \, \sqrt{2} C a^{6} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}{a^{8}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}} + \frac{{\left (5 \, \sqrt{2} A + 19 \, \sqrt{2} B - 75 \, \sqrt{2} C\right )} \log \left ({\left | -\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt{-a} a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}}{32 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

1/32*(((2*(sqrt(2)*A*a^6*sgn(tan(1/2*d*x + 1/2*c)^2 - 1) - sqrt(2)*B*a^6*sgn(tan(1/2*d*x + 1/2*c)^2 - 1) + sqr
t(2)*C*a^6*sgn(tan(1/2*d*x + 1/2*c)^2 - 1))*tan(1/2*d*x + 1/2*c)^2/a^8 + (sqrt(2)*A*a^6*sgn(tan(1/2*d*x + 1/2*
c)^2 - 1) - 9*sqrt(2)*B*a^6*sgn(tan(1/2*d*x + 1/2*c)^2 - 1) + 17*sqrt(2)*C*a^6*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)
)/a^8)*tan(1/2*d*x + 1/2*c)^2 - (3*sqrt(2)*A*a^6*sgn(tan(1/2*d*x + 1/2*c)^2 - 1) - 11*sqrt(2)*B*a^6*sgn(tan(1/
2*d*x + 1/2*c)^2 - 1) + 83*sqrt(2)*C*a^6*sgn(tan(1/2*d*x + 1/2*c)^2 - 1))/a^8)*tan(1/2*d*x + 1/2*c)/sqrt(-a*ta
n(1/2*d*x + 1/2*c)^2 + a) + (5*sqrt(2)*A + 19*sqrt(2)*B - 75*sqrt(2)*C)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c)
 + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d